Proceedings of the Third International Symposium on Intelligent Control,
Arlington, VA, August 1988.

Planning and World Modeling
for Autonomous Undersea Vehicles

Martin Herman, Tsai-Hong Hong, Scott Swetz, David Oskard

Robot Systems Division
National Bureau of Standards
Gaithersburg, MD 20899

Mark Rosol
1715 Glastonberry Rd.
Rockville, MD 20854

ABSTRACT

The goal of the Multiple Autonomous Undersea Vehi-
cles (MAUYV) project is to have multiple undersea vehicles
exhibiting intelligent, autonomous, cooperative behavior. The
MAUY control system is hierarchically structured and incor-
porates sensing, world modeling, planning and execution
This paper describes the overall architecture and then
focuses on the planning and world modeling components
required for navigation of the vehicles.

1. Introduction

The NBS Multiple Autonomous Undersea Vehicles (MAUV) pro-
ject has, as its objective, the demonstration of multiple undersea vehicles
exhibiting intelligent, autonomous, cooperative behavior. The project
involves the development of a real-time intelligent control system that
performs sensing, world modeling, planning and execution.

The MAUV control system is hierarchically structured [1, 2] and
is divided into three main components. These are sensory processing,
world modeling, and task decomposition. The goal of the task decompo-
sition component is to perform real-time decomposition of task goals by
means of real-time planning, execution and task monitoring. The world
modeling component performs the following functions: (a) it maintains a
central real-time database of information about the state of the world and
the internal state of the system, (b) it updates this database with informa-
tion from sensory processing, (c) it provides expectations of incoming
sensory data, (d) it responds to queries from the task decomposition
componuubasedonmfommonmmedmbmwmcuhmmsof
possible future states of the world. The goal of the sensory processing
component is to detect and recognize patterns, events and objects, and to
filter and integrate sensory information over space and time.

The world model serves as a buffer between the sensory processing
component and the planners and executors of the task decomposition
component. That is, queries about the world required for planning and
execution are made to the world model, and sensory processing provides
information that is used to update this world model.

The control system is divided hierarchically into several levels.
We view this kind of hierarchical division as a means of converting
broad, high-level goals into commands to actuators, motors, communica-
tion transducers, sonar transducers, etc.

In the task decomposition hierarchy, the highest level, the mission
level, converts a commanded mission into commands to each of 2 set of
groups of vehicles. These commands involve tasks that treat a whole
group of vehicles as a single unit. The group level converts group com-
mands into commands to each of the vehicles in the group. These com-
mands involve large tasks for each vehicle. The vehicle task level con-
verts task commands into elemental moves and actions for the vehicle.
The e-move (elemental move) level convens elemental moves and
actions into intermediate poses. These are converted into smooth trajec-
tory positions, velocities, and accelerations by the primitive level.
Finally, the servo level converts these into signals to actuators, transduc-
ers, etc. The MAUYV control system is based on the one developed for
the Automated Manufacturing Research Facility at NBS [S].

This paper focuses on the planning and world modeling com-
ponents at the vehicle task and e-move levels.

[SN

2. Hierarchical Planning and Execution

Before describing the elements of hierarchical planning and execu-
tion, we will provide our working definition of a plan, and describe the
difference berween planning and execution. A plan is made up of actions
and cvents. The events are either events in the world or events in the
intemnal state of the system. We represent a plan as a graph. The nodes
of the graph represent actions and the arcs represent events. The purpose
of the planner is to obtain a plan graph. It can either generate it or
retrieve it from a database.

We define execution as the process of carrying out a plan. The pur-

-pose of the executor is therefore to step through the plan graph. When

the executor arrives at a node of the plan graph, it "executes” the action
associated with the node. If an action is at the lowest level of the hierar-
chy, then executing it involves sending signals to hardware. Otherwise,
executing an action involves sending it to a lower level where it can be
decomposed. As the executor sits at & node of the plan graph, it moni-
tors for events associated with arcs leading out of the node. This moni-
toring is done at a fast cycle rate. The process of monitoring for an
event consists of querying the world model database for that event, If
an event has occurred, the executor follows the arc corresponding to that
event and steps to the next action.

The notion of hierarchical planning is the following. An action is
first input to the top level as a task command. This task is decomposed
both spatially and temporally. Spatial decomposition means dividing a
task into logically distinct jobs for distinct subsystems. For example, the
group level will have a different planner for each vehicle in the group.
Temporal decomposition means decomposing a task into a sequence of
subtasks. The first step in the plan is then the input task to the next
lower level, and this, in tm, is decomposed both spatially and tem-
porally. At each successively lower level, the actions become more
detailed and fine structured.

At each level of this hierarchy, the input task to the level first goes
to a Planner Manager. The Planner Manager performs spatial decompo-
sition by assigning jobs to each of a set of planners. The Planner
Manager also coordinates planning among these planners. The planners,
operating in perallel, generate their respective plans. Associated with
each planner is a separate executor which executes the plan. The execu-
tors also operate in parallel.

3. Planning

Unlike other systems that replan for dynamic environments only
when a specific change has been detected, each planner is constantly
replanning and, thus, continually updating its view of the world and its
solution 10 the search problem. Figure 1 illustrates the basic components
of the planning system at each level of the hierarchy. In order of execu-
tion, the system functions as follows.

3.1. Planner Manager

The Planner Manager receives as input a command set consisting
of the command itself, a set of command parameters, a set of priorities
and a set of command constraints. ' The command parameters instantiate
the command. For example the command GO_STRAIGHT is instantiated
by goal point coordinates x, y and 2. The priorities are values indicating
the importance of stealth, destruction, time, and energy. Command con-

straints indicate planning bounds. For example to avoid obstacies, the
planner may have to obey the constraint of not deviating more than a
certain distance from a straight line path between start and goal point.

Upon receipt of the command, the Job Assignment Module of the
Planner Manager partitions a command into a set of functionally distinct
tasks to be performed by different subsystems. Presently, it uses a table
lookup architecture to do this. As an example, an input command to the
vehicle task level is partitioned into 3 distinct subtasks, onc each for
navigation, communications, and sensing. Output from the Job Assign-
ment Module is in the form of individual commands, one for each
planner.

If & conflict or inability to plan within the given constraints and
world state is encountered by any of the individual planners, it is
reported o the Plan Coordination Module of the Planner Manager. The
Plan Coordination Module reviews the situation, revises the command,
and resends it to each of the plarmers. If the Plan Coordination Module
cannot revise the plan, it reports this condition to a higher-level planner
which attempts to rectify the situation similarly.

The output of the Planner Manager is a command to each of its
planners.

3.2. Planner

Planning is accomplished by means of a database of plan schemas.
Encoded within the plan schema data structure is information on how to
temporally decompose a task into subtasks, specific altemative actions to
be investigated during the state space search, evaluation criteria o be
- used when determining the cost of altemative actions, and expected
events which determine when to move on 10 the next action in the tem-
poral sequence. Plan schemas also have synchronizing events for coor-
dinating the plans generated by different planners. They are stored inter-
nally at each level of the planper hierarchy and do not flow between lev-
els.

The basic architecture and search algorithms for each of the indivi-
dual planners at a level is the same. What differs is the content of their
output plan.

The Planner utilizes the A* search algorithm {3} to achieve an
optimal path through its search space. Upon receipt of an input com-
mand, the planner retrieves the appropriate plan schema and then queries
it for a list of possible next actions. The planner then hypothesizes these
actions by posing them to the State Evaluator. Scores are assigned to
each alternative by the State Evalvator by making queries 1o the world
model regarding the effects of these commands on the vehicle. Charac-
teristics such as traversability through a region of space, the amount of
fuel required 1o perform the action, the time required 1o complete the
action, and several others are applied to a predetermined cost function.
The A* algorithm within the planner uses the resulting scores 1o incre-
mentally build the least cost path to achieve its goal. The output of the

34. Plan Failure ,

When an unforeseen condition occurs during plan execution and
the system can no longer operate within the conditions established by its
present plan, emergency planning actions must occur. First, the executor
initiates a reflexive action, such as halting the vehicle. This reflexive
action aftempts to svoid potentially hazardous situations. At this point,
the executor signals plan failure to the planner. During its next cycle,
the planner recognizes that the executor has failed and immediately
switches t0 emergency replanning mode. When in an emergency
recovery mode, many planning constraints, such as cycle times and
resource limitations, are relaxed. The planner generates a plan 1o bypass
the hazardous situation and continue towards the previous goal. All dur-
ing emergency replanning, the world modeling and sensory processing
systems are functioning normally, gathering data that aliows the system
to pick up where it left off.

Once the system has bypassed the hazardous situation, the planner
switches back to normal planning mode and continues plarming for the
original command from its new state. Changes 1o plan graphs and data
structures are transparent to the planner and sometimes occur across
several levels of the hierarchy. However, even if radical changes to the
global goals of the system were required to handle contingency situa-
tions, by the time control is passed back to the planner, it simply picks
up the next task from the current input plan graph and continues cycling.

4. World Modeling

In this section, we focus on representing and maintaining the lake
bottom map, with an emphasis on the concept of confidence-based map-
ping in an underwater environment from a sequence of data acquired by
six sonar sensors. (five forward-looking obstacle avoidance sonars and
one downward-looking depth sonar). As the vehicle moves around in
the underwater world, the information gained from the sonars is used to

. build an understanding of the environment Each sonar reading is
| modelled as a cone, and the positions of the sonar sensors are assumed

planner is a plan graph that represents the temporal decomposition of its*

input command.

After the search goal has been achieved, the plan graph is passed
to the Plan Update Module which substitutes this most recently gen-
erated plan for the onc generated during the previous planning cycle.
The new plan is more accurate than the last since this plan was gen-
erated with more recent worid model data, thus making the plan genera-
tion process more effective. The Plan Update Module simply replaces
unexecuted parts of the old plan with the newly generated one.

3.3. Executor

For each Planner there is an Executor that is responsible for suc-
cessfully executing the plan prepared by its respective Planner. The
Executor modules operate on short, regular intervals or execution cycles
with the task of reacting to feedback. Plans generated by the Planner
contain events signalling the completion of 2 task. The Executor moni-
tors these specific events and informs the Planner Manager at the pext
lower level of the hicrarchy when to move on o the next task. At the
lowest level, the Executor operates as a servo control loop, sending out
control signals to actuators and monitoring their response.

ro

to be known.

The world mode] has two types of data for its mapping scheme: a
set of global maps, each of which contains data for the velicle’s opera-
tional domain, and region-of-interest maps, which only store a localized
area around the vehicle's current location. The global maps include ter-
rain elevation data and several overlay features maps which include data
on soil, vegetation, ridges, ravines, landmarks, obstacles, defense points,
and transponders. The local maps include terrain elevaton and its statist-
ical feanyres,

The region quadtree (4] is used to represent terrain elevation in the
global maps. The advantages of using a quadtree are that large uniform
areas in the map can be described compactly by a small number of large
quadrants and that information retrieval is fast since the number of levels
in the quadtree is related logarithmically to the resolution of the tree. In
addition to the quadtrees used to represent elevation, point and line stor-
ing quadtrees have been implemented to provide locations of known
objects and topographic features of the lake bottom used in high-level
planning, Because the local maps are updated every time new sensor
data are obtained, we represent them them as grid structures, which can
be very efficiently updated.

4.1. Global Maps

The environment for the MAUV project is Lake Winnipesaukee in
New Hampshire. A priori data from a survey of the lake bottom were
collected and converted 0 quadtree format.

A scparate sensor quadtree is used to store higher resolution depth
values collecied from the sonar sensors during vehicle runs. Both
downward- and forward-looking sonars are used in refining the sensor
map. A third quadiree stores a depth confidence value for each node in
the tree. The confidence map suppons the function of distinguishing
spurious sonar readings caused by debris or signal inconsistencies from
actual obstacles that must be detecied and avoided. The region quadtree
is paricularly efficient for sensor and confidence map representation,
since unexplored portions of those maps are empty. Such areas can be
represented by a small number of nodes in the tree.

Point and line storing quadtrees [4] provide locations of known
objeasmdtopographicfeammofmelakzbonom.mmpﬁfytasks
such as locating the nearest other vehicle to a given location or plotting
2 course along lincar topographic features like ravines or underwater
pipelines.

42. Local Maps

Different levels of the control hierarchy require different local map
resolutions. Also different types of data may be needed at each level
Generally, the resolution of the map at each level is about an order of
magnitude less than the level below. All local maps are implemenied as
array data structures and only the lowest level (highest resolution) local
map updates the global quadtrees. Figure 2 shows the mapping hicrar-
chy for a generalized data set. Arrays are used for their fast, constant
access and update time and for case of implementation. Local maps are
generated from the global quadtree database, first by extracting a priori
map data for the region, then overlaying the data stored in the sensor
and confidence quadirees, which are presumed to be more accurate than
the lake survey information. In fusing the three sets of data, all three
quadtrees are traversed over the local map region Because the updating
algorithm only stores data in the sensor quadtree if the the confidence
measure is above the level assigned to the a priori data, any node for
which there are sensor data uses the sensed value. The local map uses a
priori knowledge only if insufficient sensor data have been coliected for
that node. Confidence quadiree valyes are also copied into the local
map.

In the current implementation, the mission level map divides the
area into a coarse grid of approximately 25 x 25 pixels, each pixel stor-
ing the average depth of the comresponding area. The next two levels in
the hierarchy, the group and vehicle levels respectively, share the same
Jocal map for this data set. Each pixel of the local map stores the
minimum and maximum known depths over a 4 x 4 meter area. It
serves the purpose of providing information for high level navigation
tasks, such as determining the probability that an area is traversable by
one or more vehicles. This map is updated as new information is added
to the lowest level map, the e-move map. The e-move local map has the
highest resolution, and is used in determining the traversability of a path
between two specified points. The world model returns a probability
that the path is traversable based on the information in this map. For
example, the output may be a percentage of pixels for which the vehicle
clears the lake bottom over the hypothesized path. In the simplest case,
the world model can provide a probability of 1 if all of the pixels are
traversable, or 0 if any are obstructed. Typically, the e-move pilot
planner will query the world model for the traversability of several
paths, using A* search 1o choose the best path. The e-move map is also
the level updated directly by sensor readings; its modifications are pro-
pagated up through the mapping hierarchy.

43. The Updating Algorithms

At the beginning of a mission, the MAUV control system initial-
izes the global and local maps, reading available a priori knowledge
from a secondary storage device. The sensor quadtree is initially com-
posed of a single, empty node, though it could also contain sensor data
stored from previous missions if available. Likewise, the confidence
quadtree is initialized as a single node containing a basc confidence
value, unless there is confidence data from a previous mission. In gen-
eral, the world model starts up in a state of total dependence on a priori
knowledge, gradually becoming more reliant on the current sensor map
as data are collected.

In updating the map from downward-looking sonar data, the algo-
rithm first computes an approximate neighborhood size of pixels o be
updated around the current vehicle location which depends on the width
of the sonar beam and the distance to the lake bottom. Given that the
beam width is fixed and the range is returned by the sensor, a closed-
form trigonometric solution can be performed using a lookup table.
Although the 2-D projection would be best represenied as a circular
region, for our purposes, a square neighborhood is sufficiently accurate
and more efficient to update. The depth stored at each pixel of the

Gy

neighborhood in the local map is compared 10 the observed sonar read-
ing. If the two values are not within an acceptable margin of error, the
conflicting data cause the pixel's confidence to be lowered. If the two
depth values are in agreement, the confidence value is incremented
unless it has already reached the maximum allowed. Whenever a pixel's
confidence value drops below the predefined threshold, it takes on the
new depth reading and is assigned a base confidence value. For the
. depth sonar, all information is classifiable as cither conflicting or agree-
ing with the knowledge already in the model. None of the data are’
irrelevant in this case.

The obstacle avoidance (forward-looking) sonar mapping algorithm
is more complicaed. Here the projection of the cone into the two-
dimensional plane approximates a triangular region. The cone itself is
approximated by two planar surfaces representing the top and bottom
surfaces of the cone. Due to the relatively coarse resolution used in the

obstacle avoidance algorithm (0.5m* per pixel) and the narrow width of a
sonar beam, this does not introduce significant error into the caiculations.
As with the depth sonar algorithm, each pixel in the 2-D projection is
examined and updated if its confidence value drops below the threshold.
Forward-looking sonar readings provide two types of information: a
given pixel may be clear, or it may be obstructed by an obstacle. When
the vehicle detects an obstacle, the mapping algorithm adds the informa-
tiontod:elocalmapbyuisinsth:modeledbonomoftbclakeatthm
location (i.e. making it shallower, see Figure 3).

It is also an essential function of the world model to be able to
xamovehypothsizedobstaclesinmelocdmapaswcnasaddthcm.
For each pixel in the triangular projection, if the three dimensional dis-
tance (measured along the cone trajectory) from the sonar source to the
mnunpixdbeinsumimdisleammﬁ:mgemmdbymescn-
sor, the pixel is assumed to be clear. No obstacle was detected there, so
dtdepmamnhuﬁoninmelocdmapstnuldmneﬁdﬁsmfoxmaﬁon.-
Its value should be greater than or equal to the depth of the bottom sur-
face of the sonar cone at that location, since any object obstructing the
heamwoaﬂdpmmnblycmmemmmnnmngcmmat
object. If the local map value is shallower than the beam, it condlicts
with the new sensor data and the confidence value is decremented. If
this results in a confidence lower than the threshold, the pixel is reas-
ﬁgnddwdepﬁvalueofﬂ:eboummrfuofﬂ:mmdamwbase
confidence value. Note however that a local map value in agreement
with sonar information does not necessarily increase its confidence. The
sonar beam may be projected in front of the vehicle when it is near the
surface, and a clear reading near the surface would not yield any infor-
mation about the depth of the lake bottom if we already have some a
priori knowledge that the lake is approximately N meters deep. In this
case it would be coasidered irrelevant data.

The same is not true for pixels in the projection whose distance
from the sonar source is greater than or equal to the range retumed by
the sensor. These pixels correspond to detected obstacles and the depth
values in the local map are compared to the top surface of the cone.
Here the local map data should be at least as shallow as the top surface
of the beam 10 be in agreement with the sensor reading. If the map data
does agree, it represents confirmation of an existing obstacle and the
confidence value should be incremented. It should be noted that this
confirmation only supports the hypothesis that there is an obstacle ar the
depthitwasdewcted;nocomlusionscanbedmwnastomenuchcight
of the object or whether it extends all the way to the lake bottom.

In a similar manner, if the model continually disagrees with the
sensor reading, the confidence is decremented until the depth value is
tussignedtnﬂzdep&hofmetopsurfaceuﬁhem.mkingmemodel
shallower. Its confidence is again initalized to a base value.

S. Timing

) An important issue for real-time control is timing of processes. In
discussing the timing in the MAUYV system, we consider the following
factors at each level of the hierarchy: executor cycle period, input com-
mand update interval, replanning interval, and planning horizon.

The input command update interval is the rate at which new com-
mands are input into a given level from the level above. The replanning
interval is how often the planners at a given level do cyclic replanning.

The planning horizon is the amount of time into the future covered by a
plan at a given level. The executor cycle period at each level is the rate
at which the executor checks 1o see whether & new output command is to
be sent to the level below. This cycle period is relatively fast. The fol-
lowing shows these values for each level of the hierarchy:

Mission Level Replanning Interval ~30 min
Planning Horizon “2hbr
Group Level Input Command Update Interval ~30 min
Replanning Interval “5 min
Planning Horizon ~50 min
Vehicle Level Input Command Update Interval ~5 min
Replamning Interval “1 min
Planning Horizon “ 10 min
E-move Level Input Command Update Interval ~1 min
Replanning Interval ~10 sec
Planning Horizon ~2 min
Primitive Level Input Command Update Interval ~10 sec
Replanning Interval “2 sec
Planning Horizon =20 sec
Servo Level Input Command Update Interval 2 sec
Replanning Interval 600 msec
Planning Horizon 4 sec

Output Command Update Interval 600 msec

The executor cycle period at each level is the same ~ 600 msec.
This is the ratc at which new sensor data are collected. Therefore, the
executor need not cycle faster than this since it will not determine that
there can be 2 new output command unless new information about the
world is known. The input command update interval increases by about
a factor of five as we go up the hierarchy. The time values given in the
table above represent approximate average times. For example, the rate
at which new input commands can be received can be as fast as 600
msec (the executor cycle period) at any level. However, we do not
expect this to happen very often.

The replanning interval at a given level is the same as the output
command update interval at that level. In this way, the planners attempt
to replan before each next command is determined.

The planning horizon at a given level is about twice the input com-
mand update interval at that level. Each planner therefore generates a
plan that represents a decomposition of the current input command as
well as the next input command.

6. Experimental Results

This section describes some intial experimental results on lake tests
performed with one of the MAUYV vehicles. The tests were performed at
Lake Winnipesaukee, and were run using code at the servo, primitive,
and e-move levels. The first experiment involved local obstacle
avoidance. Figure 4 shows the path executed by the vehicle during a test
run in which an obstacle was manually entered into the world model
map at point C, and the vehicle was commanded to go from point A to
point B. The control system succesfully planned and executed a path
around the obstacle at point C.

The second experiment involved following along a predefined path.
Figure 5 shows a raster-scan path from point A to point B. The vehicle
determines its x,y position from acoustic navigation transponders which
receive signals from navigation bouys placed in the water. The actual
path executed by the vehicle during this run is shown in Figure 6. One
of the obvious problems brought out by this run is that the vehicle tends
to overshoot when it makes tumns. This is a problem with the current low
level control, which allows position control but mot velocity control
Because the velocity is at maximum value when it takes a turn, it will
always overshoot. Also, there is considerable error in the position
measuring transponders, which largely accounts for the ragged appear-
ance of the pathways.

The third experiment involved updating the internal model of the
lake bottom with altitude information obtained from the downward look-
ing depth sonar. Figure 7 shows three graphs. The top and middle

graphs display the x and y positions, respectively, of the vehicle path.
. The bottom graph shows the lake depth values obtained from the word
model along this path afier the world model is updated from the infor-
mation in the depth sonar.

7. Condlusion

This paper has described the planning and worid modeling com-
ponents of the MAUV architscture with a focus on requirements for
navigation of the MAUV vehicles, Experimental lake test results have
also been presented.

References

1. Albus', 1. S. "A Control System Architecture for Intelligent
le:hme Systems.” IEEE Conf. on Systems, Man, and Cybernetics,
Arlington, VA, October 1987.

2. Hemman, M. and Albus, J.S. "Overview of the Multiple Auto-
nomous Underwater Vehicles (MAUV) Project.” Proc. 1988 IEEE
Insernational Conf. on Robosics and Automation, Philadelphia, PA,
April 1988, 618-620.

3. Nilsson, N.J. Problem-Solving Methods in Artificial Intelligence.
McGraw-Hill, New York, 1971.

4. Samet, H. "The Quadtree and Related Hierarchical Data Struc-
tures.” ACM Computing Surveys, June 1984, 187-260.

5. Simpson, J.A., Hocken, R.J.. and Albus, J.S, "The Automated
Manufacturing Research Facility of the National Bureau of Stan-
dards.” Journal of Manufacturing Systems, Vol. 1, No. 1, 1983.

PLANNER MANAGER
JOB PLAN
ASSIGNMENT .
MODULE COORDINATION
PLANNER
CYCLIC PLAN SUBTASK
REPLANNING SCHEMA |—o FAILURE
MODULE DATABASE Rfa%’b{it:“c
PLAN
UPDATE
MODULE
PLAN GRAPH
EXECUTOR

Figure 1. MAUV planning system.

“UnJ 1531 IDUEPIOAE IPRISQO " ANdig

009 -4- o

0Z 0097 -%- 0O¥T sourpoar 312e35q0

|
]
ﬂ

“Jopowu xe] Ay Jo wonoq xp Buisies

‘199133 ut ‘qidop a1 Suseandap £q pappe are sopesqO “dew apy wi sonpeA dap Buisearow 4q
[3pow pom U1 Ul SIOWISQO IS[RS IACWA SIOSUIS DUBPIOAR I[oVIsqO wioyy sarepdn) ¢ undig

|I\|l/ T
~ <

qdep sBAIISP

.x.. R

o
4..../ wonoq 3Yv] P8

Won0q 3] (IO POM
<A

Y\

Suryueid 1opd,
uonnjosaz 1saydny

depy aaow-g

Suuueid uonediavu

depy 3PIPA

$3[21y2A Jo sdnosd
Buneurpi00s 10§

depy dnoas)

Suwuerd vossin
UORN[OSal ISIVOD

depy voss

“Ayasessny Buiddew ANV ‘7 andiy

\
l
|
J

@apnarey Wavew

......................................

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Figure 7. Updating the world model lake depth.

L L

Taster.? 1360 == 1485 460 -y~ 560

Figure 5. Predefined raster scan path.

zasrer 1350 -3~ 18CC 400 -y- 43t

Figure 6. Actual raster scan path executed. Arrows show direction travelled.

1A

